GA4 API Data 2 Excel

GA4 Data - API --> Python script in Google Colab --> Google Drive Excel file

In this tutorial I will explain  how to connect to the Google Analytics 4 API, extract data from it and put it in a Excel file. The script is programmed in Python language and can be run on Google Colab and saves to Google Drive. You can easily follow the instructions even if you do not have Python coding experience.

Download/Access Google Colab file

Watch the video

Youtube video with explanation of this turorial.

Easy Colab notebook v2

This new Colab file allows you to configure all the variables in the first field, you only have to set the settings right and click on Run All, the script will do the rest. Very Easy :)

Go to: https://colab.research.google.com/drive/1kqmuj0AVgVq_UBQAVR_hqaPZ-NWFW4BH?usp=sharing 

  1. Site with GA4

First step is to have a site with Google Analytics 4 installed on it.

2.Google Cloud Console

Go to the Google Cloud Consol ( https://console.cloud.google.com/ ), you do not have to start the trial, just click on CONSOLE.

On the top you can select a PROJECT and ther you have the option to create a new project.

A. Create a new project

B. Go to APIS & SERVICES --> + ENABLE APIC AND SERVICES --> enable the Google  Analytics Data API

C. Go to CREDENTIALS and add a Service Account

D. Open Service account, go to Keys and create NEW KEYS

E. A json keyfile will be downloaded and stored in your download folder

3. Add user to GA4

Open the JSON file you just downloaded (in a text editor or in a browser window by drag and drop).


Copy the client_email right under the private key, like:

ga4-service-account@ga4-extract-data-388610.iam.gserviceaccount.com


In Analytics under Admin, go to the property, Property Access Management and add the e-mail as a user. (permissions Viewer are ok)

4. Google Drive add folder

Go to Google Drive and create a folder named "GA4-DATA" in the root. Upload the json file with the credentials from step 3.

5. Fire up Google Colab!

Open the shared notebook:  Google Colab file or go to: colab.research.google.com.

Alternatively you can copy paste the Python code below.
Place every section: # ------- in a new cell, execute every cell with SHIFT+ENTER

Link to Official documentation from Google

# -----------------------------

# Official documentation: https://developers.google.com/analytics/devguides/reporting/data/v1/quickstart-client-libraries#python

# Options, Metrics and Dimensions: https://developers.google.com/analytics/devguides/reporting/data/v1/api-schema


# Install module first

!pip install google-analytics-data

# -----------------------------

# Import modules


from google.analytics.data_v1beta import BetaAnalyticsDataClient

from google.analytics.data_v1beta.types import (

    DateRange,

    Dimension,

    Metric,

    RunReportRequest,

)

from google.oauth2 import service_account

from google.protobuf.json_format import MessageToDict

import pandas as pd

import os

from google.colab import drive


# -----------------------------

# Mount Google drive and list content


drive.mount('/content/drive')

os.listdir('./drive/MyDrive')


# -----------------------------

# List content of the folder I created on Google Drive for this project


os.listdir('./drive/MyDrive/GA4-DATA')


# -----------------------------

# Set credentials and define the right GA4 property


credentials = service_account.Credentials.from_service_account_file('./drive/MyDrive/GA4-DATA/ga4-extract-data-388610-96abbf0fa466.json')

client = BetaAnalyticsDataClient(credentials=credentials)

property_id="376319614"


# -----------------------------

# Get the data from the API


request = RunReportRequest(

    property=f"properties/{property_id}",

    dimensions=[Dimension(name="city"), Dimension(name="country")],

    metrics=[Metric(name="activeUsers"), Metric(name="sessions")],

    date_ranges=[DateRange(start_date="2020-03-31", end_date="today")],

    )


response = client.run_report(request)

response


# -----------------------------

# Turn the raw data into a Table


def ga4_result_to_df(response):

    """Original: print_run_report_response: Prints results of a runReport call. v2.1 changed by Bram to create DataFrame"""

    result_dict = {}  

    for dimensionHeader in response.dimension_headers:

        result_dict[dimensionHeader.name] = []

    for metricHeader in response.metric_headers:

        result_dict[metricHeader.name] = []

    for rowIdx, row in enumerate(response.rows):

        for i, dimension_value in enumerate(row.dimension_values):

            dimension_name = response.dimension_headers[i].name

            result_dict[dimension_name].append(dimension_value.value)

        for i, metric_value in enumerate(row.metric_values):

            metric_name = response.metric_headers[i].name

            result_dict[metric_name].append(metric_value.value)

    return pd.DataFrame(result_dict)


df = ga4_result_to_df(response)

df


# -----------------------------

# Export the table to an Excel file on the Google Drive


df.to_excel('./drive/MyDrive/GA4-DATA/GA4_Excel.xlsx')